Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 812: 152535, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942245

RESUMO

Diatoms are photosynthetic organisms with potential biotechnological applications in the bioremediation sector, having shown the capacity to reduce environmental concentrations of different pollutants. The diatom Cylindrotheca closterium is known to degrade di-n-butyl phthalate (DBP), one of the most abundant phthalate esters in aquatic environments and a known endocrine-disrupting chemical. In this study, we present for the first time the in silico identification of two putative DBP hydrolases (provisionally called DBPH1 and DBPH2) in the transcriptome of C. closterium. We modeled the structure of both DBPH1-2 and their proposed interactions with the substrate to gain insights into their mechanism of action. Finally, we analyzed the expression levels of the two putative hydrolases upon exposure of C. closterium to different concentrations of DBP (5 and 10 mg/l) for 24 and 48 h. The data showed a DBP concentration-dependent increase in expression levels of both dbph1 and 2 genes, further highlighting their potential involvement in phthalates degradation. This is the first identification of phthalate-degrading enzymes in microalgae, providing new insights into the possible use of diatoms in bioremediation strategies targeting phthalates.


Assuntos
Closterium , Diatomáceas , Ácidos Ftálicos , Dibutilftalato , Hidrolases/genética , Plásticos
2.
Microb Ecol ; 82(2): 334-343, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33452613

RESUMO

Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus Trebouxia (T. TR1 and T. TR9) and Coccomyxa (C. subellipsoidea and C. simplex) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure, Coccomyxa algae showed higher capacity of Cd intake than Trebouxia species, with C. subellipsoidea being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both Coccomyxa algae. Trebouxia TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them. Coccomyxa subellipsoidea and Trebouxia TR9 appear as the most interesting candidates for further applications.


Assuntos
Clorófitas , Líquens , Microalgas , Cádmio/toxicidade , Clorófitas/genética , Microalgas/genética , Estresse Oxidativo
3.
Mar Drugs ; 18(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722301

RESUMO

Many dinoflagellates species, especially of the Alexandrium genus, produce a series of toxins with tremendous impacts on human and environmental health, and tourism economies. Alexandrium tamutum was discovered for the first time in the Gulf of Naples, and it is not known to produce saxitoxins. However, a clone of A. tamutum from the same Gulf showed copepod reproduction impairment and antiproliferative activity. In this study, the full transcriptome of the dinoflagellate A. tamutum is presented in both control and phosphate starvation conditions. RNA-seq approach was used for in silico identification of transcripts that can be involved in the synthesis of toxic compounds. Phosphate starvation was selected because it is known to induce toxin production for other Alexandrium spp. Results showed the presence of three transcripts related to saxitoxin synthesis (sxtA, sxtG and sxtU), and others potentially related to the synthesis of additional toxic compounds (e.g., 44 transcripts annotated as "polyketide synthase"). These data suggest that even if this A. tamutum clone does not produce saxitoxins, it has the potential to produce toxic metabolites, in line with the previously observed activity. These data give new insights into toxic microalgae, toxin production and their potential applications for the treatment of human pathologies.


Assuntos
Dinoflagellida/genética , Proliferação Nociva de Algas , Toxinas Marinhas/biossíntese , Transcriptoma , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fosfatos/deficiência , Filogenia , RNA-Seq
4.
Mar Drugs ; 17(8)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387272

RESUMO

Enzymes are essential components of biological reactions and play important roles in the scaling and optimization of many industrial processes. Due to the growing commercial demand for new and more efficient enzymes to help further optimize these processes, many studies are now focusing their attention on more renewable and environmentally sustainable sources for the production of these enzymes. Microalgae are very promising from this perspective since they can be cultivated in photobioreactors, allowing the production of high biomass levels in a cost-efficient manner. This is reflected in the increased number of publications in this area, especially in the use of microalgae as a source of novel enzymes. In particular, various microalgal enzymes with different industrial applications (e.g., lipids and biofuel production, healthcare, and bioremediation) have been studied to date, and the modification of enzymatic sequences involved in lipid and carotenoid production has resulted in promising results. However, the entire biosynthetic pathways/systems leading to synthesis of potentially important bioactive compounds have in many cases yet to be fully characterized (e.g., for the synthesis of polyketides). Nonetheless, with recent advances in microalgal genomics and transcriptomic approaches, it is becoming easier to identify sequences encoding targeted enzymes, increasing the likelihood of the identification, heterologous expression, and characterization of these enzymes of interest. This review provides an overview of the state of the art in marine and freshwater microalgal enzymes with potential biotechnological applications and provides future perspectives for this field.


Assuntos
Biotecnologia/métodos , Microalgas/enzimologia , Biodegradação Ambiental , Biocombustíveis , Vias Biossintéticas , Biotecnologia/tendências , Carotenoides/metabolismo , Lipídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...